If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=3Y^2-15Y+1
We move all terms to the left:
-(3Y^2-15Y+1)=0
We get rid of parentheses
-3Y^2+15Y-1=0
a = -3; b = 15; c = -1;
Δ = b2-4ac
Δ = 152-4·(-3)·(-1)
Δ = 213
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{213}}{2*-3}=\frac{-15-\sqrt{213}}{-6} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{213}}{2*-3}=\frac{-15+\sqrt{213}}{-6} $
| 5/3x-2x=18 | | c/60=1.68 | | 3(b-3)=2(5b+10) | | 2.25-2x=3.60+4x | | 0=-2/5x+60 | | 5(-x-4)=60 | | 8x=10x-32 | | 7/8x=15-2x | | 15-2x=7/8x | | 5=2x=-3.5 | | 5(3x+13=35 | | -3=2x=-3.5 | | 60=7200/t | | 5x(6x9)=(5x6)= | | 4=7(a+5)-2 | | a=-22+(-18) | | 4=-5x-2 | | -22+(-18)=a | | -2+13x+x=180 | | 6-g=(33/10) | | 10x+40+50=180 | | 10x+40+50=+80 | | 5x(7x2)=(5x7)= | | 336/(x-10)=-21 | | 7x+215=180 | | -2/5b-7=21 | | 6-x=-3x+26 | | /6(1-m)=9-2m | | 1250/5=N.n | | 11x+279=180 | | 0.5m+-3.5=3m+6.5 | | (5x/6)+(1/4)(8+x)=37 |